Über die eisenhaltigen Vertreter des Strukturtyps Pd₅Sb₂*

M. Ellner und M. El-Boragy**

Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 75, W–7000 Stuttgart 10 (FRG)

(Eingegangen am 12. November 1991)

Abstract

By means of splat-cooling, new metastable phases $Fe_5SiP(m)$, $Fe_5GeP(m)$ and $Fe_5SiAs(m)$ were prepared. These compounds are of the same type as Pd_5Sb_2 (*hP42*) which may be described as a stacking and filling variant of the Ni₂In structure. Powder diffraction data are reported for these new representatives. Structural relationships to Ni₂In and the reason for the metastability are discussed.

Zusammenfassung

Mit Hilfe der "*splat-cooling*"-Technik wurden neue metastabile Phasen $Fe_5SiP(m)$, $Fe_5GeP(m)$ und $Fe_5SiAs(m)$ hergestellt. Sie sind isotyp zu Pd_5Sb_2 (*hP42*), einer Stapellungsund Auffüllungsvariante des Ni₂In-Typs. Es werden Pulveraufnahmedaten mitgeteilt. Strukturelle Beziehungen zum Ni₂In-Typ, sowie die Ursache für die Metastabilität dieser Phasen werden diskutiert.

1. Einleitung

Die Struktur von Pd_5Sb_2 kann als eine Stapellungs- und Auffüllungsvariante des Ni₂In-Typs angesehen werden [1]. Diese intermetallische Verbindung gehört zum komplexen Phasenbündel, das sich im Phasendiagramm Pd–Sb [2] zwischen $Pd_{20}Sb_7$ ($Pd_{20}Sb_7$ -Typ) [3] und Pd_5Sb_3 (teilweise aufgefüllter Ni₂In-Typ) [4] erstreckt. Die Kristallchemie der palladiumhaltigen Phasen zeigt ähnliche Merkmale wie die der eisenhaltigen intermetallischen Verbindungen. In vorliegender Arbeit geht man der Frage nach, welche eisenhaltigen zu Pd_5Sb_2 isotypen Phasen existieren und, wie die Substitution des Palladiums durch Eisen die Stabilität der marginalen B-Elementen-Teilstruktur energetisch beeinflusst.

Das Phasendiagramm des Systems Fe–Si [5] weist im Bereich von $x_{Si}=0,25-0,33$ die Phasen Fe₃Si (Fe₃Si-Typ) [6] und Fe₂Si(h) auf. Die Hochtemperaturphase Fe₂Si(h) besitzt eine defekte CsCl-Struktur [7]; anderen Angaben zu Folge sollte sie mit dem Ni₂In-Typ eng verwandt sein [8]. Im homologen System Fe–Ge [2] sind bei vergleichbaren Stöchiometrien folgende

^{*}Herrn Professor Konrad Schubert gewidmet.

^{**}Beurlaubt von Faculty of Engineering, Suez Canal University, Port Said, Egypt.

Phasen bekannt: $Fe_3Ge(h)$ (Ni₃Sn-Typ) [9], $Fe_3Ge(r)$ (Cu₃Au-Typ) [10] und Fe_2Ge (Ni₂In-Typ) [11].

Die eisenreichen Phosphide Fe₃P (Ni₃P-Typ) [12] und Fe₂P (Fe₂P-Typ) [13] sind bis zur Schmelztemperatur stabil [14]. Das arsenreichste Arsenid im Phasendiagramm Fe-As [15] ist Fe₂As (Cu₂Sb-Typ) [16]. Fe₁₇As₅ ist eine Hochdruckphase; ihre Struktur ist rhomboedrisch, hR51, R3; a=6,7855; c=16,301 Å [17]. Im System Fe-Si-P [18] ist bislang nur die ternäre Phase FeSi₄P₄ [19] bekannt. Über die ternären Systeme Fe-Si-As und Fe-Ge-P liegen in der Literatur [20, 21] keine Angaben vor.

2. Experimentelle Methoden

Legierungen wurden aus Elementen folgender Reinheit hergestellt: Eisen 99,98% (Ventron), Silicium 99,9999% (Ventron), Germanium 99,999% (Ventron), Phosphor 99.9999% (Ventron) und Arsen 99.999% (Koch-Light). Die Elemente wurden in den zunächst evakuierten und dann mit Argon (Messer-Griesheim; Reinheit 99,999%) gefüllten und abgeschlossenen Silicaampulen (40 kPa) im Tiegelofen allmählich aufgeschmolzen und anschliessend homogenisiert. Das Gewicht der Legierungen wurde nach der Homogenisierung kontrolliert. Zur Feststellung der Phasengleichgewichte wurden Guinieraufnahmen mit Fe K α_1 und Co K α_1 Strahlung angefertigt. Ein Teil der Legierung wurde gemörsert und bei der für die Homogenisierung benutzten Temperatur unter Argon in Silicaampulen entspannt und in Wasser abgeschreckt. Die Herstellung von schnell aus der Schmelze abgeschreckten Legierungen erfolgte mit Hilfe der splat-cooling-Technik in einem evakuierbaren und mit Argon gefüllten (80 kPa) Stosswellenrohr [22]. Zur Ermittlung der Gitterparameter wurden Guinieraufnahmen (Enraf-Nonius FR 552) unter Verwendung von Co K α_1 Strahlung durchgeführt. Die Lage der Beugungslinien wurde mit einem Abbe-Komparator (Optik Zeiss-Jena) gemessen. Zur Verfeinerung der Gitterparameter nach der Methode der kleinsten Fehlerquadrate wurden alle beobachteten Reflexe verwendet. Die Berechnung von Pulverintensitäten erfolgte mit Hilfe des Programms LAZY-PULVERIX [23].

3. Messergebnisse

3.1. $Fe_5SiP(m)$

Guinieraufnahmen von Legierungen $Fe_{71}Si_{20}P_9$, $Fe_{71}Si_{14,5}P_{14,5}$ und $Fe_{71}Si_9P_{20}$ (Regulus 1d 600 °C; Pulver 1d 600 °C) gaben keinen Anhaltspunkt zur Existenz einer zu Pd_5Sb_2 isotypen Phase. Dagegen zeigten "splat-cooling"-Proben dieser Legierungen die Struktur von Pd_5Sb_2 . Diese Beobachtung spricht für die Metastabilität der neuen Phase. Da in den phosphorreicheren "splat-cooling"-Proben – im Vergleich zu den siliciumreicheren Proben – die schwachen Beugungslinien nicht sichtbar waren, wird diese Phase mit

der Summenformel Fe₅SiP(m) (m, metastabil) bezeichnet. Zur Vermessung der Gitterparameter wurde eine mit Silicium geeichte Guinieraufnahme (Co K α_1 Strahlung) von Fe₇₁Si₂₀P₉ ("splat-cooling") verwendet. Die mit Hilfe der Methode der kleinsten Fehlerquadrate berechneten Gitterparameter von Fe₅SiP(m) sind: a = 6,766(1) Å und c = 12,456(2) Å. Die Pulveraufnahmedaten für diese metastabile Phase sind in Tabelle 1 angeführt. Für die Berechnung von Pulverintensitäten wurden die Kristallstrukturdaten des Strukturtyps Pd₅Sb₂ [1] verwendet: Raumgruppe P6₃cm; 2Pd(a) 0,0,951; 4Pd(b) 1/3, 2/3,093; 4×6Pd(c) 259,0,115; 630,0,212; 306,0,320; 624,0,425; 0,5×2Si(a) 0,0,235; 0,5×4Si(b) 1/3,2/3,288; 0,5×6Si(c) 661,0,018; 0,5×2P(a) 0,0,235; 0,5×4P(b) 1/3,2/3,288; 0,5×6P(c) 661,0,018.

3.2. $Fe_5 GeP(m)$

In den Guinieraufnahmen von Legierungen der Zusammensetzung $Fe_{72}Ge_{28-x}P_x$, $Fe_{71}Ge_{29-x}P_x$ und $Fe_{70}Ge_{30-x}P_x$ (Regulus 1d 600 °C; Pulver 1d 600 °C) war keine Phase vom Pd_5Sb_2 -Typ vorhanden. "Splat-cooling"-Proben $Fe_{71,5}Ge_{15}P_{13,5}$, $Fe_{71,5}Ge_{14,5}P_{14}$ und $Fe_{71,5}Ge_{13,5}P_{15}$ wiesen die metastabile Phase $Fe_5GeP(m)$ auf. Für die Berechnung von Gitterparametern wurde die mit Silicium geeichte Guinieraufnahme (Co K α_1 Strahlung) der Probe $Fe_{71,5}Ge_{14,5}P_{14}$ ("splat-cooling") verwendet; die Gitterparameter sind: a = 6,811(1) Å und c = 12,644(2) Å. Die Pulveraufnahmedaten von $Pd_5GeP(m)$ zeigt Tabelle 2.

3.3. $Fe_5SiAs(m)$

Auch die letzte in vorliegender Untersuchung gefundene Phase – Fe₅SiAs(m) – war nur in den "splat-cooling"-Proben vorhanden. Während die wärmebehandelten Proben der Stöchiometrie Fe₅SiAs (Regulus 1d 600 °C; Pulver 1d 600 °C) die Phasengleichgewichte von Fe₃Si und Fe₂As (Cu₂Sb-Typ) zeigten, war diese metastabile Phase in Koexistenz mit einer anderen Phase bereits in den eisenreicheren "splat-cooling"-Proben Fe₇₃Si₁₂As₁₅ und Fe₇₃Si₁₀As₁₇ anwesend. Weitere "splat-cooling"-Proben Fe₇₁Si₁₃As₁₆, Fe₇₁Si₁₂As₁₇ und Fe₇₁Si₉As₂₀ enthielten das Fe₅SiAs(m) fast einphasig. Für die Ermittlung von Gitterparametern wurde die mit Silicium geeichte Guinieraufnahme (Co K α Strahlung) der "splat-cooling"-Probe Fe₇₁Si₁₁As₁₈ benutzt. Sie lieferte folgende Messdaten: a=6,877(1) Å und c=12,596(2) Å. Die Pulveraufnahmedaten von Fe₅SiAs(m) weist Tabelle 3 auf.

4. Diskussion

Der Strukturtyp Pd_5Sb_2 ist zu Ni₂In homöotyp. Die Verwandschaft der beiden Strukturtypen spiegelt sich desgleichen in der Kommensurabilität ihrer Elementarzellen wieder. Der metrische Zusammenhang der Elementarzelle des Pd_5Sb_2 -Typs (*H*) und der Elementarzelle des Ni₂In-Typs (*h*) ist: $(a,b,c)_H = (2, -1,0; 1,1,0; 0,0,5/2)(a,b,c)_h$; d.h. $a_H = 2a_h + b_h$. Dies ist aus dem

hkl	$d_{\rm c}$ (Å)	d_0 (Å)	I ₀ ^b	I _c ^c
002	6,2280	_	nbt	4
010	5,8595	-	nbt	1
012	4,2676	_	nbt	2
110	3,3830	3,3826	SSS	6
111	3,2647	_	nbt	2
004	3,1140		nbt	1
112	2,9727	2,9713	SSS	6
020	2,9298	_	nbt	1
014	2,7498	2,7484	SSS	3
022	2,6511	2,6505	ms	10
113	2,6227	2,6230	S	8
114	2,2911	2,2902	SSS	4
120	2,2147	2,2148	SSS	1
121	2,1805	2,1799	st	25
024	2,1338	2,1337	st	30
122	2,0867	2,0860	SS	7
006	2,0760	_	nbt	4
115	2,0060	2,0062	sst	100
016	1,9568	_	nbt	1
123	1,9541	1,9535	sst	∫ 6
030	1,9532 ∫	1,9535	sst] 91
032	1,8637	_	nbt	1
124	1,8048	1,8048	m	15
116	1,7694	1,7693	s	7
026	1,6939	1,6942	SSS	2
220	1,6915	-	nbt	1
221	1,6761	1,6765	SSS	1
125	1,6552	-	nbt	1
034	1,6546	-	nbt	1
222	1,6324	-	nbt	1
130	1,6251	_	nbt	1
131	1,6115	1,6112	SS	6
117	1,5749	_	nbt	1
132	1,5725	_	nbt	1
223	1,5665	1,5662	SSS	3
008	1,5570	1,5556	SSS	2
126	1,5146	_	nbt	1
133	1,5133	-	nbt	1
018	1,5048	-	nbt	1
224	1,4864	_	nbt	1
040	1,4649	-	nbt	1
134	1,4407	-	nbt	1
042	1,4260	-	nbt	1
036	1,4225	1,4225	SSS	3
118	1,4144	-	nbt	1
225	1,3994	1,3995	s	18

TABELLE 1 Pulveraufnahme von Fe₅SiP(m)^a

*Struktur: Fe₇₁Si₂₀P₉; Pd₅Sb₂-Typ; Raumgruppe P6₃ cm; a = 6,766(1) Å; c = 12,456(2) Å. *nbt, nicht beobachtet. * $I_c = 100 \times I_{hkl}/I_{115}$.

hkl	d _c (Å)	d ₀ (Å)	I ₀ ^b	I _c ^c
002	6,3220	-	nbt	3
010	5,8985	-	nbt	1
012	4,3128		nbt	1
110	3,4055	_	nbt	2
111	3,2883	3,2887	SSS	1
004	3,1610	_	nbt	1
112	2,9982	2,9993	SS	4
020	2,9493	_	nbt	<1
014	2,7861	2,7874	SS	5
022	2,6727	2,6740	s	6
113	2,6489	-	nbt	2
114	2,3168	2,3168	SS	4
120	2,2294	-	nbt	1
121	2,1956	2,1955	st	21
024	2,1564	2,1561	st	30
006	2,1073	_	nbt	3
122	2,1025	2,1020	s	4
115	2,0303	2,0303	sst	100
016	1,9845	1,9845	SSS	1
123	1,9707]	1,9665	sst	5
030	1,9662	1,9665	sst	ົງ 99
032	1,8775	_	nbt	`<1
124	1,8219	1,8218	m	16
116	1,7920	1,7915	s	11
026	1,7146	1,7148	SS	3
220	1,7028	1,7018	SSS	1
221	1,6875	1,6878	SS	2
125	1,6723	_	nbt	<1
034	1,6695	1,6698	SS	3
222	1,6442	-	nbt	1
130	1,6359	-	nbt	<1
131	1,6224	1,6224	SS	5
117	1,5957	1,5957	SSS	1
132	1,5838	-	nbt	<1
008	1,5805		nbt	1
223	1,5788	-	nbt	1
126	1,5315	-	nbt	2
018	1,5266	1,5266	SSS	1
133	1,5251	-	nbt	<1
224	1,4991	-	nbt	1
040	1,4746	-	nbt	1
134	1,4529	_	nbt	<1
036	1,4376	1,4378	SS	2
042	1,4361	-	nbt	<1
118	1,4336	-	nbt	<1
225	1,4124	1,4122	S	19

TABELLE 2 Pulveraufnahme von Fe5GeP(m)*

*Struktur: Fe_{71,5}Ge_{14,5}P₁₄; Pd₅Sb₂-Typ; Raumgruppe P6₃cm; a = 6,811(1) Å; c = 12,644(2) Å. ^bnbt, nicht beobachtet. ^c $I_c = 100 \times I_{hkl}/I_{115}$.

 hkl	d _c (Å)	d_0 (Å)	I ₀ ^b	I _c ^e
002	6.2980	6.3125	s	3
010	5,9557	_	nbt	1
012	4.3273	4.3302	SSS	1
110	3,4385	3,4351	555	2
111	3,3171	3 3174	s	1
004	3 1490	-	nht	î
112	3 0180	3 0185	m	1
020	2 9778	-	nht	<1
014	2,7838	2 7855	m	4
022	2,1000	2,1000	m	A A
113	2,0021		nht	1
110	2,0000		m	1
190	2,0220	2,5222	111	
101	2,2010	9.9164	55 ct	- 1 91
121	0 1696	2,2104	SL	21
100	2,1030	2,1034	50	29
144	2,1197	2,1199	m	4
115	2,0993	2,0990	S	0 07
115	2,0322	2,0318	SSL	97
030	1,9852	1,9851	SSU	1 100
123	1,9839]	1,9851	SSU	႞ၣ
016	1,9799	_	nbt	<1
032	1,8934	-	nbt	<1
124	1,8313	1,8310	m	16
116	1,7918	1,7917	m	11
220	1,7193	-	nbt	<1
026	1,7158	1,7156	s	3
221	1,7035	1,7038	s	2
034	1,6794	1,6794	ms	∫ 3
125	1,6785	1,6794	ms	j 1
222	1.6586	1.6583	SS	` 1
130	1.6518		nbt	<1
131	1.6378	1.6374	m	5
132	1.5978	_	nbt	<1
117	1,5943]	1.5935	s	ſĪ
223	1.5910	1,5935	s	1 î
009	15745	2,0000	nbt	ι -
199	1,0740	—	nbt	-1
100	1,5571	- 1 5951	1100	
140	1,5303	1,0001	55	2
010	1,5222	1,0222	55	1
224 040	1,0090	1,5091	55 nht	1
194	1,4000	—	nbt	-1
104	1,4020		not	
044	1,4490	1,4492	55	
119	1,4444	1,4424	oo nht	-1
995 110	1,401	1 / 108	met	10
197	1 4055	1,4100	11136	19
101	1 3010	1,4040	ooo nht	1
125	1,0010		nbt	21
100	1,0010	_	nbt	- 1
200	1 3584	1 3573	me	۲
101 I	1,0004	1,0010	1110	r

TABELLE 3 Pulveraufnahme von Fe₅SiAs(m)^a

*Struktur: Fe₇₁Si₁₁As₁₈; Pd₅Sb₂-Typ; Raumgruppe $P6_3cm$; a = 6,877(1) Å; c = 12,596(2) Å. ^bnbt, nicht beobachtet.

 ${}^{c}I_{c} = 100 \times I_{hkl} / I_{030}.$

	a (Å)	c (Å)	V (Å ³)	c/a
Pd ₅ Sb ₂	7,606	13,863	694,55	1,823
Fe ₅ SiP(m)	6,766(1)	12,456(2)	493,83	1,841
Fe ₅ GeP(m)	6,811(1)	12,644(2)	507,97	1,856
Fe ₅ SiAs(m)	6,877(1)	12,596(2)	515,90	1,832

TABELLE 4 Achsenverhältnisse c/a

Vergleich der Gitterparameter vorliegender Phasen vom Pd_5Sb_2 -Typ und der teilweise aufgefüllten [24] und zum Ni₂In isotypen Phase Fe₂Ge (*hP5*; $a = 4,028 \dots 3,992$ Å; $c = 5,023 \dots 4,993$ Å [25, 26]) ersichtlich.

Im Strukturtyp Pd_5Sb_2 ist die Anzahl der zur Ebene (110) parallelen Atomschichten gleich zehn. Die Träger der energetisch wichtigen Valenzelektronen sind die Antimonatome; sie sind näherungsweise in vier Schichten mit z = 0,018; 0,235 bzw. 0,288; 0,518 und 0,735 bzw. 0,788 untergebracht. Im Vergleich zum Strukturtyp Ni₂In, der durch vier Atomschichten gebildet wird, weist Pd_5Sb_2 zwei zusätzliche Palladium Atomschichten auf. Bezüglich dieser Gegebenheit kann man diesen Strukturtyp als eine Stapellungs- und Auffüllungsvariante des Ni₂In charakterisieren.

Im Vergleich zu Pd_5Sb_2 [1] weisen die Achsenverhältnisse c/a der vorliegenden eisenhaltigen metastabilen Phasen höhere c/a-Werte auf (s. Tabelle 4).

Die Vertreter des Pd_5Sb_2 -Typs sind intermetallische Verbindungen mit fester Stöchiometrie. Die Feststellung, dass die eisenhaltigen Vertreter durch Mischung von B¹⁴- (Si,Ge) und B¹⁵-Elementen (P,As) gebildet werden, während Pd_5Sb_2 in der B-Teilstruktur allein Antimon als ein Element der Gruppe B¹⁵ aufweist, führt zur Annahme, dass die formal niedrigere Valenzelektronenkonzentration der eisenhaltigen Phasen durch einen 3d-Elektronenbeitrag des Eisens kompensiert wird. Da der Ionisierungsvorgang bei höheren Temperaturen bzw. durch eine Unterkühlung der Schmelze – wie dies bei der "splatcooling"-Technik geschieht – begünstigt wird, ist es nicht überraschend, dass die eisenhaltigen Vertreter des Strukturtyps Pd_5Sb_2 nur als metastabile Phasen [27] existent sind.

Literatur

- 1 M. El-Boragy, S. Bhan und K. Schubert, J. Less-Common Met., 22 (1970) 445.
- 2 T. B. Massalski, H. Okamoto, P. R. Subramanian und L. Kacprzak (eds.), *Binary Alloy Phase Diagrams*, 2nd edn., American Society for Metals, Metals Park, OH, 1990.
- 3 W. Wopersnow und K. Schubert, J. Less-Common Met., 51 (1977) 35.
- 4 K. Schubert, K. Anderko, M. Kluge, H. Beskow, M. Ilschner, E. Dörre und P. Esslinger, Naturwissenschaften, 40 (1953) 269.
- 5 O. Kubaschewski, Iron Binary Phase Diagrams, Springer, Berlin, 1982.

- 138
- 6 M. C. M. Farquhar, C. M. Lipson und A. R. Weil, J. Iron Steel Inst., London, 152 (1945) 457.
- 7 K. Khalaff und K. Schubert, J. Less-Common Met., 35 (1974) 341.
- 8 H. Kudielka, Z. Kristallogr., 145 (1977) 177.
- 9 A. K. Stolc und P. V. Geld, Fiz. Met. Metalloved., 13 (1962) 159.
- 10 K. Kanematsu und T. Ohoyama, J. Phys. Soc. Jpn., 20 (1965) 236.
- 11 L. Castelliz, Monatsh. Chem., 84 (1953) 765.
- 12 H. Nowotny, Naturwissenschaften, 26 (1938) 631.
- 13 H. Nowotny und E. Henglein, Monatsh. Chem., 79 (1949) 385.
- 14 H. Okamoto, Bull. Alloy Phase Diagrams, 11 (1990) 404.
- 15 H. Okamoto, J. Phase Equilibria, 12 (1991) 457.
- 16 R. D. Heyding and L. D. Calvert, Can. J. Chem., 35 (1957) 449.
- S. Maaref, R. Madar, P. Chaudouet, R. Fruchart, J. P. Senateur, M. T. Averbuch-Pouchot, M. Backmann, A. Durif und P. Wolfers, *Mater. Res. Bull.*, 18 (1983) 473.
- 18 V. Raghvan, Phase Diagrams of Ternary Iron Alloys, Part 3 Ternary Systems Containing Iron and Phosphorus, Indian Institute of Metals, Calcutta, 1988.
- 19 R. Vogel und B. Giessen, Arch. Eisenhüttenwes., 30 (1959) 619.
- 20 N. I. Ganina, A. M. Zacharov, V. G. Olenitscheva und L. A. Petrova, Diagrammy Sostojanija Metallitscheskich Sistem, Band XXXIV, VINITI, Moskva, 1990.
- 21 P. Villars und L. D. Calvert, *Pearson's Handbook of Crystallographic Data for Intermetallic Phases*, American Society for Metals, Metals Park, OH, 1985.
- 22 G. Bucher, M. Ellner, F. Sommer und B. Predel, Monatsh. Chem., 117 (1980) 1367.
- 23 K. Yvon, W. Jeitschko und E. Parthé, J. Appl. Crystallogr., 20 (1977) 73.
- 24 M. Ellner, J. Less-Common Met., 48 (1976) 21.
- 25 A. K. Stolc, P. V. Geld und V. L. Zagrjazhskij, Fiz. Met. Metalloved., 16 (1963) 130.
- 26 A. K. Stolc, P. V. Geld und V. L. Zagrjazhskij, Zh. Neorg. Khim., 9 (1964) 140.
- 27 M. Ellner, Z. Metallkd., 76 (1985) 372.